

PROMOTE PROTECT PROSPER

South Carolina Department of Health and Environmental Control

Tommy Flynn
Air Planning and Assessment Section
Bureau of Air Quality, Department of Health and Environmental Control
Irmo PM_{2.5} Stakeholders
November 28, 2007

AGENDA

- What is the PM_{2.5} standard?
- What is the current reading at the Irmo station?
- What are the Columbia Area Design Value Trends?
- Why do speciation sampling?
- Where does DHEC conduct speciation sampling?
- What are the major components of PM_{2.5} in South Carolina?
- Where do the major components of PM_{2.5} come from?
- What can be done with speciation sampling?
- What are the possible sources of PM_{2.5} at the Irmo sampling station?
- Is speciation sampling coming to Irmo?

WHAT IS THE PM_{2.5} STANDARD?

- There are two forms of the PM_{2.5} National Ambient Air Quality Standards (NAAQS).
 - The annual standard is set at 15µg/m³ averaged over three years.
 - The daily standard is set at 35µg/m³ (set as the 98th percentile) averaged over three years.

WHAT IS THE CURRENT ANNUAL DESIGN VALUE AT THE IRMO STATION?

South Carolina Counties Violating the Annual PM_{2.5} Standard (2004-2006)

WHAT IS THE CURRENT DAILY DESIGN VALUE AT THE IRMO STATION?

South Carolina Counties Violating the Daily PM_{2.5} Standard (2004-2006)

WHAT ARE THE COLUMBIA AREA DESIGN VALUE TRENDS?

Columbia Area Annual Design Values

WHAT ARE THE COLUMBIA AREA DESIGN VALUE TRENDS?

Columbia Area Daily Design Values

WHY DO SPECIATION SAMPLING?

- Chemical speciation sampling is part of the major monitoring requirements set forth in 40 CFR Part 58, Ambient Air Quality Surveillance for Particulate Matter.
- o Data can be used to:
 - Help to implement the PM_{2.5} standard by using speciated data as input to air quality modeling analyses and as indicators to track progress of controls;
 - Aid in the understanding of health studies by linking effects to PM_{2.5} constituents;
 - Understand the effects of atmospheric constituents on visibility impairment; and
 - Use the speciated particulate data to aid in monitoring network design and siting adjustment.

WHERE DOES DHEC CONDUCT SPECIATION SAMPLING?

South Carolina and Surrounding State PM_{2.5} Sampler Locations

WHAT ARE THE MAJOR COMPONENTS OF PM_{2.5} IN SOUTH CAROLINA?

2006 South Carolina and Surrounding State PM_{2.5} Speciation Components

WHERE DO THE MAJOR COMPONENTS OF PM_{2.5} COME FROM?

Species	Possible Sources
Sulfate	Fossil fuel combustion
Nitrate	Industrial and automobile emissions, organic decomposition
Organic Mass by Carbon	Biomass burning, automobile emissions, fossil fuel combustion, gas-to-particle conversion of hydrocarbons
Soil	Desert dust, construction, road dust

WHAT CAN BE DONE WITH SPECIATION SAMPLING?

	Statistic [*]	Comparition (y.q/m²)										
Year		Hileale	Salfale	A:	ç. 13	S	осн	011	Spec	PHZ.5 FRH H*** [pq/=3]	Annual Avorago	Avorage of Shighert days
	Annual Average	0.9	5.0	1.6	0.5	0.5	7.8	0.1	16.4	14.3		
2002	Avorago of Shighort PM2,5 mars days	0.6	10.9	3.3	0.7	0.5	11.1	3.0	30.1	27.6		
	Highert PM2.5 mazz day	0.4	9.5	2.9	0.8	0.7	12.6	3.1	30.0	29.9	7	
	2** Highert PM2,5 mazz day	0.4	10.0	3.7	1.0	0.4	13.2	3.0	31.6	29.7		
	3 rd Highert PM _{2,5} mazz day	0.3	11.8	3.3	0.5	0.6	10.5	2.9	29.8	27.9		
	4 th Highert PM _{2.5} mazz day	1.4	11.6	3.3	0.9	0.6	10.6	3.7	32.1	25.2		
	5 th Highert PM _{2,5} mazz day	0.5	11.6	3.2	0.3	0.4	8.7	2.2	26.9	25.2		_
2003	Annual Average	0.9	4.7	1.5	0.4	0.5	7.0	1.2	15.8	15.0		
	Avorago of 5 highest PM2,5 mass days	0.9	10.2	2.9	0.3	0.6	10.3	9.3	34.6	32.5		
	Highert PM2,5 mazz day	0.0	0.1	0.0	0.3	0.6	15.0	26.7	42.6	40.1		
	2 nd Highert PM _{2,5} marr day	0.3	17.5	4.5	0.2	0.4	8.8	7.3	38.9	36.8		()
	3 rd Highert PM _{2,5} mazz day	0.4	14.8	4.0	0.4	0.6	10.2	5.1	35.6	33.8		
	4 th Highert PM _{2.5} mazz day	0.3	11.9	3.1	0.2	0.4	8.9	6.2	31.1	28.2		
	5 th Highert PM _{2,5} mazz day	3.7	6.6	3.2	0.3	0.9	8.7	1.4	24.7	23.5		
	Annual Average	0.9	4.6	1.5	0.3	0.5	6.9	1.0	15.8	14.4		
	Average of Shighert PM2,5 mazz dayz	0.6	13.0	3.8	0.3	0.5	8.5	4.2	30.9	29.4		
	Highert PM2.5 mazz day	0.4	13.1	3.7	0.5	0.6	9.4	5.0	32.8	33.0		
2004	2** Highert PM2,5 marr day	0.5	16.2	4.6	0.3	0.5	8.1	4.5	34.8	32.5		l ()
	3 rd Highert PM2,5 mazz day	0.2	12.5	3.3	0.3	0.6	8.8	4.4	30.0	27.5		
	4 th Highert PM2.5 mazz day	1.7	12.4	4.5	0.2	0.5	7.7	2.6	29.5	27.1		
	5 th Highert PM2,5 mazz day	0.4	10.7	2.8	0.3	0.6	8.3	4.2	27.4	27.0		
	Annual Average	1.0	4.5	1.5	0.3	0.6	7.4	1.0	16.4	14.8		
	Avorago of Shighort PM2,5 mazz dayz	0.4	10.4	2.9	0.4	0.5	8.3	4.7	27.5	28.6		
	Highert PM2.5 mazz day	0.3	9.2	2.7	0.6	0.5	10.0	3.2	26.5	30.0		
2005	2 Highert PMs, smarr day	0.2	12.5	2.9	0.4	0.2	8.7	5.9	30.8	28.9		
	3 rd Highert PM _{2,5} mazz day	0.2	8.0	2.4	0.6	0.5	7.0	4.2	22.8	28.7		
	4 th Highert PM2,5 mazz day	0.4	11.0	3.2	0.1	0.3	7.2	6.8	29.0	27.8		
	5 th Highert PM _{2,5} mazz day	0.6	11.1	3.2	0.4	0.8	8.6	3.5	28.2	27.7		
	Annual Average	0.8	4.0	1.4	0.6	0.6	7.8	2.7	18.0	14.3		
	Average of Shighert PM2.5 mazz dayz	0.5	9.0	2.9	0.5	0.7	10.8	4.3	28.8	29.1		
	Highert PM2,5 mazz day	0.3	12.1	3.6	0.5	0.6	11.0	4.5	32.6	35.1		
2006	2** Highert PM2,5 mazz day	1.1	6.3	2.5	0.3	1.1	11.3	-1.3	21.3	28.3		
	3 rd Highert PM _{2,5} mazz day	0.2	8.7	2.9	0.6	0.6	10.0	9.0	32.1	27.5		
	4 th Highert PM2,5 mazz day	0.4	8.8	3.2	0.4	0.6	12.3	5.0	30.6	27.4		
	5 th Highert PM _{2,5} mazz day	0.5	9.3	2.5	0.6	0.7	9.3	4.4	27.3	27.4		

MAJOR COMPONENT TRENDS

 Can be used to see how the major components of PM_{2.5} vary over time.

		Comparition (µa/m²)								_		
Year	Statirtic [°]	Hileale	Selfale	:	Creelal		•сн	Olher	Spec Marr	PH2.5 FRH H200" [eq/=3]	Annual Avorago	Avorago of 5 highest days
2002	Annual Average	0.9	5.0	1.6	0.5	0.5	7.8	0.1	16.4	14.3		
	Average of 5 highest PM2,5 mass days	0.6	10.9	3.3	0.7	0.5	11.1	3.0	30.1	27.6		
	Highort PM2.5 mars day	0.4	9.5	2.9	0.8	0.7	12.6	3.1	30.0	29.9		
	2 nd Highort PM _{2.5} mars day	0.4	10.0	3.7	1.0	0.4	13.2	3.0	31.6	29.7		
	3 rd Highort PM2,5 mars day	0.3	11.8	3.3	0.5	0.6	10.5	2.9	29.8	27.9		
	4 th Highort PM _{2,5} mars day	1.4	11.6	3.3	0.9	0.6	10.6	3.7	32.1	25.2		
	5 ^{lk} Highort PM2,5 mars day	0.5	11.6	3.2	0.3	0.4	8.7	2.2	26.9	25.2		
	Annual Avorago	0.9	4.7	1.5	0.4	0.5	7.0	1.2	15.8	15.0		
	Avorago of 5 highort PMz,5 mars days	0.9	10.2	2.9	0.3	0.6	10.3	9.3	34.6	32.5		
	Highort PMz,5 marr day	0.0	0.1	0.0	0.3	0.6	15.0	26.7	42.6	40.1		
2003	2 nd Highort PM _{2.5} mars day	0.3	17.5	4.5	0.2	0.4	8.8	7.3	38.9	36.8		
	3 rd Highort PM2.5 mars day	0.4	14.8	4.0	0.4	0.6	10.2	5.1	35.6	33.8		
	4 ¹⁶ Highort PM _{2.5} mars day	0.3	11.9	3.1	0.2	0.4	8.9	6.2	31.1	28.2		
	5 th Highert PM2,5 mars day	3.7	6.6	3.2	0.3	0.9	8.7	1.4	24.7	23.5		
	Annual Avorago	0.9	4.6	1.5	0.3	0.5	6.9	1.0	15.8	14.4		
	Avorago of 5 highost PM2,5 mass days	0.6	13.0	3.8	0.3	0.5	8.5	4.2	30.9	29.4		
	Highort PM2,5 mars day	0.4	13.1	3.7	0.5	0.6	9.4	5.0	32.8	33.0		
2004	2 nd Highort PM _{2.5} mars day	0.5	16.2	4.6	0.3	0.5	8.1	4.5	34.8	32.5		
	3 rd Highort PM2.5 mars day	0.2	12.5	3.3	0.3	0.6	8.8	4.4	30.0	27.5		
	4 ^{lk} Highort PM _{2.5} mars day	1.7	12.4	4.5	0.2	0.5	7.7	2.6	29.5	27.1		
	5 th Highort PM2,5 mars day	0.4	10.7	2.8	0.3	0.6	8.3	4.2	27.4	27.0		
	Annual Average	1.0	4.5	1.5	0.3	0.6	7.4	1.0	16.4	14.8		
	Average of 5 highest PMz,5 mass days	0.4	10.4	2.9	0.4	0.5	8.3	4.7	27.5	28.6		
	Highort PMz, s marr day	0.3	9.2	2.7	0.6	0.5	10.0	3.2	26.5	30.0		
2005	2 nd Highort PM _{2,5} mars day	0.2	12.5	2.9	0.4	0.2	8.7	5.9	30.8	28.9		
	3 rd Highert PM _{2.5} mars day	0.2	8.0	2.4	0.6	0.5	7.0	4.2	22.8	28.7		
	4 th Highert PM2,5 mars day	0.4	11.0	3.2	0.1	0.3	7.2	6.8	29.0	27.8		
	5 th Highort PM _{2.5} mars day	0.6	11.1	3.2	0.4	0.8	8.6	3.5	28.2	27.7		
2006	Annual Average	0.8	4.0	1.4	0.6	0.6	7.8	2.7	18.0	14.3		
	Average of 5 highest PMz,5 mass days	0.5	9.0	2.9	0.5	0.7	10.8	4.3	28.8	29.1		
	Highert PMz, s marz day	0.3	12.1	3.6	0.5	0.6	11.0	4.5	32.6	35.1		
	2 nd Highert PM _{2.5} mars day	1.1	6.3	2.5	0.3	1.1	11.3	-1.3	21.3	28.3		
	3 rd Highort PM2.5 mars day	0.2	8.7	2.9	0.6	0.6	10.0	9.0	32.1	27.5		
	4 ^{lb} Highert PM2.5 mars day	0.4	8.8	3.2	0.4	0.6	12.3	5.0	30.6	27.4		
	5 th Highort PM2.5 mars day	0.5	9.3	2.5	0.6	0.7	9.3	4.4	27.3	27.4		

EXCEPTIONAL EVENT DETECTION

- Time-series plots can be used to detect one time events that affect air quality.
 - In the plot below, potassium spikes on July 3rd. This event may be related to fireworks.

TREND ANALYSIS

- Speciation data can be used to determine when the highest concentrations of a component occur.
 - In the examples below, nitrate has a high average concentration during the winter months. Sulfate has a high average concentration during the summer months.

SOURCE APPORTIONMENT STUDIES

- Speciation data can be used to identify contributing source types.
 - In this example, a sulfate signal is detected through a source apportionment model.

WHAT ARE THE POSSIBLE SOURCES OF PM_{2.5} AT THE IRMO SAMPLING STATION?

- In ambient monitoring, the sources could be numerous.
 - Examples of sources of PM_{2.5} could be point sources, area sources, automobiles, open burning, etc.
 - Without speciation sampling a definitive answer is hard to make.

IS SPECIATION SAMPLING COMING TO IRMO?

Questions?

Contact information:

Tommy Flynn flynntj@dhec.sc.gov (803)898-3251